On Bernstein sets, κ -coverings and quotient groups

Marcin Kysiak

Institute of Mathematics, University of Warsaw

Hejnice, February 2009

Marcin Kysiak On Bernstein sets, k-coverings and quotient groups

Definition

• A set $B \subseteq \mathbb{R}$ is a Bernstein set, if for every perfect set $P \subseteq \mathbb{R}$

$$B \cap P \neq \emptyset \land P \nsubseteq B,$$

• A Bernstein group is a subgroup of $\mathbb R$ which is a Bernstein set.

Definition

- A set $C \subseteq \mathbb{R}$ is a κ -covering, if for every set $X \in [\mathbb{R}]^{\kappa}$ there exists $t \in \mathbb{R}$ such that $t + X \subseteq C$.
- A set C is a $< \kappa$ -covering, if it is a λ -covering, for every $\lambda < \kappa$.

Theorem (Kraszewski–Rałowski–Szczepaniak–Żeberski)

There exists a partition of \mathbb{R} into \mathfrak{c} many Bernstein sets, each of them being a $< cf(\mathfrak{c})$ -covering.

Question (Kraszewski-Rałowski-Szczepaniak-Żeberski)

Assume that $\mathfrak{c} > cf(\mathfrak{c}) = \omega_1$. Does there exist a Bernstein set which is an ω_1 -covering?

Proposition

Assume that $G \lhd \mathbb{R}$ is a subgroup and let

$$\pi: \mathbb{R} \to \mathbb{R}/G$$

be the quotient epimorphism, i.e.

$$\pi(x) = [x]_G = x + G.$$

Then the following conditions are equivalent, for a set $C \subseteq \mathbb{R}/G$

• C is a κ -covering in \mathbb{R}/G ,

•
$$\pi^{-1}[C]$$
 is a κ -covering in \mathbb{R} .

Quotient groups and Bernstein sets

Lemma

For every κ such that $\omega\leq\kappa\leq\mathfrak{c},$ there exists a subgroup $B\lhd\mathbb{R}$ such that

- B is a Bernstein group,
- $|\mathbb{R}/B| = \kappa$.

Proof.

- Construct disjoint Bernstein sets B₀, B₁ such that B₀ ∪ B₁ is linearly independent over Q,
- Find a Hamel base $H \supseteq B_0 \cup B_1$ and $Z \subseteq B_1$ of cardinality κ ,
- Let $B = span(H \setminus Z)$, then $\mathbb{R}/B \simeq span(Z)$,
- B intersects all perfect sets, because $B_0 \subseteq B$ does,
- P ⊈ B, for a perfect set P otherwise z + P, for z ∈ Z, would be disjoint with B.

Remark

The group \mathbb{R}/B is isomorphic to the |Z|-dimensional linear space over \mathbb{Q} . Thus:

• if |Z| = 1, then $\mathbb{R}/B \simeq \mathbb{Q}$,

• if
$$|Z| = \mathfrak{c}$$
, then $\mathbb{R}/B \simeq \mathbb{R}$.

Remark

Let $B \lhd \mathbb{R}$ be a Bernstein group and let $\emptyset \neq \mathcal{A} \subsetneq \mathbb{R}/B$. Then $\bigcup \mathcal{A}$ is a Bernstein set.

Theorem

For every κ such that $\omega \leq \kappa \leq \mathfrak{c}$, there exists a Bernstein set which is a $< \kappa$ -covering and is not a κ -covering.

Corollary

There exists a Bernstein set which is a < c-covering. In particular, a Bernstein ω_1 -covering exists, if and only if, $c > \omega_1$.

Corollary

There exists a $< \mathfrak{c}$ -covering which is completely nonmeasurable with respect to every σ -algebra of the form $\mathcal{B}or[\mathcal{I}]$, where \mathcal{I} is a σ -ideal with co-analytic base.

Bernsteins for free

Theorem

Suppose that $\{A_{\xi} : \xi < \kappa\}$ is a partition of \mathbb{R} , $\kappa > 1$, and let

$$\lambda_{\xi} = \min\{\lambda \in Card : A_{\xi} \text{ is not a } \lambda\text{-covering}\}.$$

Then there exists a partition $\{B_{\xi} : \xi < \kappa\}$ of \mathbb{R} into Bernstein sets such that

$$\lambda_{\xi} = \min\{\lambda \in Card : B_{\xi} \text{ is not a } \lambda\text{-covering}\}.$$

Proof.

- find a Bernstein group $B \lhd \mathbb{R}$ with $\mathbb{R}/B \simeq \mathbb{R}$,
- consider a partition {A'_ξ : ξ < κ} of ℝ/B with the same characteristics as {A_ξ : ξ < κ},

• put
$$B_\xi = \pi^{-1}[A'_\xi]$$

Theorem (Kraszewski–Rałowski–Szczepaniak–Żeberski)

There exists a partition of \mathbb{R} into Bernstein sets A, B, none of them being a 2-covering.

Proof.

 $R_0 = \bigcup_{k \in \mathbb{Z}} [2k, 2k + 1), R_1 = \bigcup_{k \in \mathbb{Z}} [2k - 1, 2k)$ is a partition of \mathbb{R} into sets which are not 2-coverings.

Theorem

There exists a Bernstein set which is a < c-covering.

Theorem (Kraszewski–Rałowski–Szczepaniak–Żeberski)

There exists a partition of \mathbb{R} into \mathfrak{c} many Bernstein sets, each of them being a $\langle cf(\mathfrak{c})$ -covering.

Corollary (Kraszewski–Rałowski–Szczepaniak–Żeberski)

If c is regular, then there exists a partition of \mathbb{R} into c many < c-coverings which are Bernstein sets.

Lemma (Kraszewski-Rałowski-Szczepaniak-Żeberski)

If G is an abelian group of regular cardinality λ , then there exists a partition of G into λ many $< \lambda$ -coverings.

Theorem

For every $\kappa < \mathfrak{c}$, there exists a partition of \mathbb{R} into κ^+ many κ -coverings which are Bernstein sets.

Proof.

- take a Bernstein group B with $|\mathbb{R}/B| = \kappa^+$,
- find a partition of \mathbb{R}/B into κ^+ many κ -coverings,
- get Bernsteins for free.

Theorem

If there exist two disjoint < c-coverings in \mathbb{R} , then c is regular.

Lemma

If $B \subseteq \mathbb{R}$ is a < c-covering, then fewer than c translates of its complement do not cover \mathbb{R} .

Proof of the theorem.

- let A, B be disjoint $< \mathfrak{c}$ -coverings, $A \cup B = \mathbb{R}$,
- fewer than \mathfrak{c} translates of A do not cover \mathbb{R} ,
- let $\mathbb{R} = \bigcup_{\xi < cf(\mathfrak{c})} X_{\xi}$, with $|X_{\xi}| < \mathfrak{c}$,
- find t_{ξ} such that $t_{\xi} + A \supseteq X_{\xi}$,
- $\bigcup_{\xi < cf(\mathfrak{c})} (t_{\xi} + A) = \mathbb{R}$, so $cf(\mathfrak{c}) = \mathfrak{c}$.